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Goals
• Quark flavor physics entering exciting era

– Precision experiments and theoretical calculations → stringent tests of 
SM, searches for new physics

– Many opportunities
• Understand physics of quark flavor, CP violation

– Test SM picture, CKM unitarity
– Physics responsible for CKM matrix elements

• Search for new physics
– Rare decays
– Differences ≥ 3σ :

• |Vub|excl. and |Vub|incl.
• |Vcb|excl. and |Vcb|incl.
• |εK| from SM and experiment [SWME, Lattice 2014]

• BaBar excess in R(D(*)) = BR(B → D(*)τv) / BR(B → D(*)lv) [FNAL/MILC, PRL 
2012, arXiv:1206.4992; Lees et al., PRL 2012, arXiv:1205.5442]

• Constrain, characterize new physics



Lattice systematics
• Discretization effects

– Light quarks, gluons
– Heavy quarks

• Unphysically large light (u, d) quark masses
• Operator matching
• Finite-volume effects
• Scale fixing
• Quark mass tuning
• Fitting
• Electroweak corrections ~ e.g., EM isospin-breaking
• Quenching ~ omitting s, c vacuum polarization
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Effective field theories

• Effective continuum field theories
– Match to lattice gauge theory
– Accelerate approach to continuum limit (improvement 

programs)
– Propagate systematics to observables
– Symanzik effective theory, heavy quark effective theory

• Lattice (staggered, …) chiral perturbation theory
– Match to lattice gauge theory, scales E << ΛχSB

– Hadronic degrees of freedom, interactions
– Extrapolate light (u, d) quark mass, lattice spacing



Symanzik effective theory
• Continuum spacetime and quark, gluon degrees of freedom
• Light quarks ~ lattice spacing (amq << 1)
• Lattice symmetries ~ hypercubic spacetime rotations
• Expand action, operators ~ engineering dimension

• Match on-shell correlation functions to lattice gauge theory
• Discretization effects perturbations of continuum limit theory
• Assumption of light quarks can be lifted (arbitrary amq) [Aoki et al., 

Prog. Theor. Phys. 2003, hep-lat/0107009; Christ et al., PRD 2007, hep-lat/0608006]

[Symanzik, NPB 226 (1983) 187; ibid., 205]



Heavy quark effective theory
• Lattice gauge theory with heavy quark symmetry

– mQ >> ΛQCD

– Arbitrary amQ

• Continuum spacetime, heavy quark, gluon degrees of freedom
• Lattice symmetries ~ hypercubic spacetime rotations
• Expand action, operators ~ heavy quark power counting

• Match on-shell correlation functions to LGT and QCD
• Discretization effects perturbations of continuum limit theory

[Kronfeld, PRD 2000, hep-lat/0002008; Harada et al., 
PRD 2002, 2005, hep-lat/0112044, hep-lat/0112045]



Staggered χPT
• Consider Symanzik effective continuum theory for E << ΛχSB

• Spontaneously broken chiral SU(2) or SU(3)
• Map operators of SET to χPT ~ lattice χPT
– Remnant doubler degrees of freedom ~ pseudo-flavor = taste
– Lattice symmetries ~ hypercubic rotations, taste symmetry

• Expand action, operators about chiral, continuum limits

• Discretization effects of light quarks, gluons and deviations 
from chiral symmetry as perturbations

• Fit numerical simulation data to extract LECs, extrapolate
• Variations for different lattice fermions, heavy (c, b) quarks, ...

[Lee and Sharpe, PRD 1999, hep-lat/9905023; Aubin and 
Bernard, PRD 2003, hep-lat/0304014, hep-lat/0306026]



mπ/K and fπ/K in mixed-action SχPT

• fK / fπ and K → πlν form factor:  |Vus|; Gasser-Leutwyler 
couplings, LGT LECs; mπ/K and fπ/K ~ light quark masses, 
scale

• Mixed-action lattice QCD ~ Symanzik imp. action to reduce 
valence quark cutoff effects, low cost vacuum polarization

• Mixed-action lattice (staggered …) chiral perturbation theory
– Symanzik effective theory for mixed-action lattice theory
– Valence-sea symmetry broken
– Map to operators of chiral effective theory, calculate mπ/K and fπ/K

• Calculated one-loop (NLO) corrections for all lattice irreps 
(meson tastes), valence-valence, valence-sea mesons
– Taste-pseudoscalar valence-valence mesons ~ Goldstone bosons
– Results for valence-valence mπ/K , all fπ/K ~ form of unmixed theory

[JAB et al., Lattice 2013, arXiv:1311.6268]



B parameters for kaon mixing BSM
• Constrain new physics entering neutral kaon mixing
• B parameters enter matrix elements of ∆S = 2 effective Hamiltonian

• Gauge ensembles with 2+1 flavors of asqtad-improved staggered quarks 
generated by MILC Collaboration

• HYP-improved staggered valence quarks
• SWME, PRD 2013:  First calculation with multiple lattice spacings (~ 0.09, 

0.06, 0.045 fm) and vacuum polarization of u, d, s quarks [Bae et al., arXiv:1309.2040]



B parameters for kaon mixing BSM

• Light (u, d) sea quark mass 0.4 to 0.1ms, valence quark masses 1 to 0.1ms
• Identify golden ratios with mixed-action SχPT [JAB et al., PRD 2012, arXiv:1202.1570]

– Eliminate NLO chiral logarithms, with discretization effects
– Simplify extrapolation to physical light mass, continuum limit

• Results for BK , B3 agree with those of 2+1 flavor domain-wall calculation 
at lattice spacing ~ 0.086 fm

• Results for B2, B4, B5 disagree (also ETMC); investigating differences

RBC/UKQCD, 
PRD 2012 
[arXiv:1206.5737]

SWME, PRD 
2013 
[arXiv:1309.2040]



B parameters for kaon mixing BSM
• Update with additional ensembles:  Light (u, d) sea quark mass 0.6 to 0.05ms
• Lattice spacings ~ (0.12), 0.09, 0.06, 0.045 fm

RBC/UKQCD, 
PRD 2012

SWME, PRD 
2013

SWME, update 
2014, prelim., 
[JHL, KPS 2014]

• Systematics from chiral-continuum extrapolation, perturbative renormalization
• Differences in B2, B4, B5 persist
• Overall picture remains same

[Jaehoon Leem et al., Lattice 2014]



CKM matrix elements from H → Plν

• Heavy quark Q decays into light quark x

• Mediated by vector current in SM

• Scalar and tensor currents enter BSM

H P

W
v

l
Q x

u, d, s



Rare decays B → Pl+l-

• Loop suppressed in SM ~ FCNC, prime candidates for new physics
• Vector, scalar, and tensor currents enter BSM via effective Lagrangian

b t, c, u s, d b
t, c, u

s, d

W

W W

γ,Z

v

l+

l-

l+ l-



H → Plv, H → Pl+l- form factors
• Defined in terms of hadronic matrix elements of flavor-changing vector, 

scalar, tensor currents

• q is momentum transferred 
to outgoing leptons

• EP is energy of recoiling P-
meson, in H rest frame

• f||,  f⊥ parameterization 
convenient in HQET, ChPT, 
lattice QCD

• fT related to f⊥ by HQS



Reduction procedure ~ form factors
• Hadronic matrix elements simply related to 3-point Green functions ~ 

vacuum expectation values of currents between creation, annihilation 
operators for initial, final mesons

• Meson propagators, 2-point Green functions, provide amputation factors, 
kinematic factors

• Euclidean Green functions of QCD ~ correlation functions of lattice gauge 
theory (Monte Carlo estimators)

• Correlation function behavior well understood ~ series of exponentials
• Fit 3-point and 2-point correlation functions to extract amputation, 

kinematic factors and desired hadronic matrix elements
– Appropriately constructed ratios of correlation functions ~ form factors; simple 

fits to constant, constant + leading excited-state contribution
– Simultaneous fits to 3-point and 2-point correlators ~ greater control over 

excited-state contributions



Form factor lattice calculations
• Generate correlation functions (lattice data) at different lattice spacings, 

quark masses, recoil momenta
• Fit correlation functions to obtain form factors at different lattice spacings, 

quark masses, recoil momenta
• Renormalize currents (match to continuum normalization)

– Not needed (automatic) if CVC/PCAC relation holds in lattice theory
– Necessary for Fermilab bottom, charm

• Fit form factors as functions of lattice spacing, quark masses, recoil 
momenta and extrapolate to continuum limit, physical quark masses

– Model-independent parameterization desirable 
– Staggered chiral perturbation theory, in chiral regime

• Incorporate systematic errors
• Interpolate and (for B decays) extrapolate recoil energy dependence

– Model-independent parameterization
– z-expansion derived from analyticity, unitarity, crossing symmetry, heavy quark 

symmetry



Simulation details
• Quark and gluon actions

– Gluon action:  one-loop Symanzik-improved Luscher-Weisz gauge action [Weisz, NPB 1983; 
Curci et al., PLB 1983; Weisz and Wohlert, NPB 1984; Luscher and Weisz, PLB and CMP 1985]

– Fermion actions
• u, d, s quarks:  O(a2) tadpole improved (asqtad) staggered action [Alford et al., PLB 1995; Bernard 

et al., PRD 1998; MILC, PRD 1999; Lepage, PRD 1999]
• c, b quarks:  Sheikholeslami-Wohlert (clover) action with Fermilab interpretation [El-Khadra et 

al., PRD 1997; Kronfeld, PRD 2000]
– Gauge and staggered actions used (MILC) to generate 2+1 flavor asqtad staggered 

gauge ensembles, with fourth root of staggered determinant [Bazavov et al., RMP 2010]
– Fermilab method uses heavy quark symmetry, controls discretization effects of charm 

and bottom quarks ~ validate B form factor lattice calculations with SM values of CKM 
matrix elements and D semileptonic branching fractions

• Input parameters
– u, d, s quark masses from π, K masses (isospin limit)
– c, b quark masses from Ds, Bs masses (spin-averaged kinetic masses)
– Scale determination from fπ via modified Sommer scale (r1)

• Valence masses, ensemble parameters
– s quark mass approximately physical on different ensembles
– u, d quark masses vary for different projects, typical range ~ 0.4 to 0.1 or 0.05ms
– Lattice spacings typical range ~ 0.12 to 0.06 or 0.045 fm

• Blind analyses of correlator data, form factors by introducing offset into current 
renormalization factors



|Vub| from Bs → Klv
• Lattice QCD form factors + measurements by Belle II, LHCb → |Vub|
• Study of excited-state contamination in ratios
• Simultaneous fits of 2-point, 3-point correlators to three exponentials (with 

staggered oscillating partners and finite-volume effects)
• Select fit intervals, priors from effective mass, stability plots
• Hard kaon, SU(2) staggered ChPT fits in progress

[Yuzhi Liu, R. Zhou et al., Lattice 2013, arXiv:1312.3197]
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staggered oscillating partners and finite-volume effects)
• Select fit intervals, priors from effective mass, stability plots
• Hard kaon, SU(2) staggered ChPT fits in progress

• Expect final errors ~ 5% level

[Yuzhi Liu, R. Zhou et al., Lattice 2013, arXiv:1312.3197]



|Vcs(d)| from D → K(π)lv
• To decrease statistical errors, ratios constructed with p = 0 pion, kaon 2-

points and continuum dispersion relations
• Take mP, mD from fits to 2-points
• Ratios asymptote to lattice form factors if continuum relations hold

– Dispersion relations
– Momentum independence of amputation factors

• Include leading excited-state 
contribution in fits to correlator ratios

• Selection of final ratio fit intervals, 
priors in progress

[JAB et al., Lattice 2012, arXiv:1211.4964]



|Vcs(d)| from D → K(π)lv
• Preliminary fits to SU(3) and SU(2) staggered chiral perturbation theory, chiral-

continuum extrapolation
• Cross checks of form factor shapes with CLEO, BaBar, Belle, …

– Lattice QCD breaks down at large momenta; exp. limited at small momenta
– For D semileptonic decays, kinematically allowed momenta accessible to both
– Test lattice QCD against experimentally determined D form factor shapes
– Validate application of lattice QCD methods to B semileptonic decays

• Blinding factors cancel in fiducial ratios, form factor normalizations remain hidden

• Preliminary SU(2) chiral-continuum 
extrapolation

• Ratio of vector form factor for D → K 
decay to value at q2 = 0.10 GeV2 (arb.)

• Unity at fiducial point, by definition
• Statistical errors only in lattice result
• Reasonable qualitative agreement, except 

perhaps for high q2 (low recoil)
• Quantitative comparison requires 

estimates of lattice systematics

[JAB et al., Lattice 2012, arXiv:1211.4964]



Rare decay B → Kl+l-

• New physics searches by Belle, BaBar, CDF, LHCb, Belle II
• Fit form factor ratios to constants ~ cross check for consistency with 

simultaneous fits
• SU(3) SChPT fails → SU(2) SChPT at NLO works well for chiral-

continuum extrapolations; include analytic strange mass dependence
• Include uncertainty from B*Bπ coupling, heavy quark discretization 

effects, in ChPT

[Yuzhi Liu, R. Zhou et al., Lattice 2013, arXiv:1312.3197]



Rare decay B → Kl+l-

• Estimate systematics from fitting, current renormalization, scale 
determination, tuning input masses, finite-volume effects

• Model-independent z-expansion fit, extrapolation to large recoil energy
– Kinematic constraint at q2 = 0 imposed after cross check
– Heavy-quark bound used to set priors on higher-order terms in z-expansion
– 3-term expansion describes lattice data well, accounts for truncation

• Analysis complete; final errors 4-6% for q2 > 17 GeV2

[Yuzhi Liu, R. Zhou et al., Lattice 2013, arXiv:1312.3197]



B → πlv, B → πl+l-

• Fit correlator ratios, including leading excited-state contribution
• Chiral-continuum extrapolation with hard pion SU(2) staggered ChPT
• Functional z-expansion to extrapolate data to larger recoil (4 terms)
• Systematic error estimates in progress for B → πll
• B → πlv analysis complete, ~ 4% error for |Vub|

[Daping Du et al., Lattice 2013, arXiv:1311.6552]



|Vcb| and quark flavor physics
• |Vcb| normalizes Unitarity Triangle ~ flavor physics
• Error in SM                                                            dominated by error |Vcb|
• Error in SM εK dominated by error in |Vcb|
• > 3σ tension between SM and experimental |εK| ~ |Vcb|4 [W. Lee et al., Lattice 2014]

– Increases with new exclusive |Vcb| [JAB et al. (FNAL/MILC), PRD 2014, 
arXiv:1403.0635]

– Correlated with 3.0σ difference ~ |Vcb|excl. vs. |Vcb|incl.

– Vanishes with inclusive |Vcb|

[Yong-Chull Jang et al., Lattice 2013, arXiv:1311.5029; JAB et al., Lattice 2014; Yong-Chull Jang et al., Lattice 2014]



• FNAL/MILC update supersedes previous ~ first determinations of |Vcb| from exclusive 
decays including vacuum polarization effects of u, d, s quarks

• Next generation intensity-frontier experiments, experimental errors below ~ 1%
• Lattice calculations with different discretizations of heavy quarks ~ cross checks of 

systematics, improved precision
• ETMC, FNAL/MILC, RBC/UKQCD, HPQCD, SWME working on B(s) → D(s)

(*)lν form 
factors for SM, BSM matrix elements [Atoui et al., Lattice 2013; DeTar et al., Lattice 2010; 
Kawanai et al., Lattice 2013; Christ et al., arXiv:1404.4670; Monahan et al., PRD 2013; Jang et al., Lattice 
2013]

Lattice calculations



• FNAL/MILC calculations of form factor hA1(1)

• “Discretization errors” are (mostly) heavy-quark discretization effects
• Chiral extrapolation errors ~ fit function and parametric uncertainties
• Parametric uncertainty from D*Dπ coupling

B → D*lv at zero recoil



Strategy

• Target precision:  ~ 0.7-1.0% for axial form factor at zero recoil
– May require one-loop improvement of mass-dimension 5 operators in action

• Attack chiral extrapolation errors with physical-mass gauge ensembles
– 2+1+1 flavor HISQ ensembles (MILC) [A. Bazavov et al., PRD 2010; Lattice 2010-13]

– Finite-volume effects for physical-mass pions [FNAL/MILC, arXiv:1403.0635]

• Reduce heavy-quark discretization effects (charm) with improved Fermilab 
action, currents
– HQET power counting, λ ~ aΛQCD, ΛQCD/mQ
– Improved action tree-level improved through O(λ3) in HQET [Oktay and Kronfeld, PRD 2008]

– Axial, vector currents require improvement

B D*

b c

u, d

Aµ



Projected errors

• Discretization errors ~ power-counting estimates of heavy-quark errors
• “1-loop OK” means mass-dimension five operators in the action, corresponding 

operators in the current, matched at one-loop
• “tree-level OK” means tree-level matching for action, current
• Assumptions

– 8 source times per ensemble, 1000 gauge configurations on existing HISQ ensembles, 
additional ensemble with lattice spacing 0.03 fm (MILC, planned for HISQ bottom)

– Errors from statistics, kappa tuning, ChPT, gDD*π scale with statistics
– 50% of errors from ChPT, gDD*π eliminated by inclusion of physical-point ensembles



Tasks
• Design B and D* interpolating operators ← present operators suffice
• Improve current, action

– Enumerate operators through third-order in HQET (done for OK action)
– Match matrix elements at tree-level, one-loop (tree-level done for OK action)

• Develop code
– Inverter (quark propagator constructor) for OK action ← optimization in progress [YCJ, 

WJL for SWME]
– Application (correlator construction) code ← made available by FNAL/MILC

• Generate data
– Kappa tuning runs ← production and preliminary analysis for tree-level OK action [YCJ 

for SWME, Lattice 2014]
– Physical-mass ensembles ← HISQ ensembles publicly available [MILC]

• Calculate current renormalization factors ← independent of developing code, data 
production

• Analyze data
– Correlator fits
– Staggered chiral perturbation theory fits ← presently used formula applies for OK 

bottom and charm, HISQ light quarks on HISQ ensembles
– Estimate systematics



Work in progress
• Optimization of OK inverter [Yong-Chull Jang et al., Lattice 2013, arXiv:1311.5029]

– Precalculate gauge-link combinations ~ acceleration of bi-stabilized 
conjugate gradient inverter

– Wrote and tested GPU code
– Optimizations to reduce overheads in progress

• Masses of Bs
(*) mesons and bottomonium ~ spectrum tests of 

tree-level improved OK action [Yong-Chull Jang et al., Lattice 2014]

– Data for 0.12 and 0.15 fm Asqtad staggered ensembles
– Quantify improvement (beyond clover action) in hyperfine mass 

splittings, inconsistency parameter [DeTar et al., Lattice 2010, arXiv:1011.5189]

– Completed preliminary tests of dispersion relations, comparisons of 
hyperfine splittings, reduction in inconsistency

– Generating data for final tests, tuning [Yong-Chull Jang]

• Tree-level current improvement [JAB et al., Lattice 2014]



Current improvement

• Include operators with quantum numbers of desired operator to 
approach continuum limit, for arbitrary quark masses

[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Kronfeld, PRD 2000; Harada et al., PRD 2002]

• Enumerate operators ~ O(λ3) in HQET power counting
– O0 ~ same dimension as continuum operator
– On ~ correct deviations from continuum, suppressed or enhanced by 

powers of lattice spacing

• Match matrix elements to fix coefficients Cn, renormalization 
factor
– Expand in coupling, external momenta
– No expansion in quark masses, {m0a}



O(λ) tree-level improvement
• Consider continuum matrix elements of b → c current with 

Dirac structure Γ, at tree-level

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

• Standard relations for relativistic spinors, relativistic mass shell



Matrix elements of lattice currents

• Consider matrix elements of b → c lattice current with Dirac 
structure Γ, at tree-level

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

• Standard relations, relativistic mass shell altered by lattice 
artifacts → Lattice spinor relations, lattice mass shell (a = 1)



Momentum expansions
• Expand normalized continuum, lattice spinors for momentum 

small compared to 1/a, mq

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

• At p = 0, matrix elements differ only by normalization factor, 
dependent on tree-level rest mass, the lattice mass-shell energy



Improved quark field
[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Kronfeld, PRD 2000; Harada et al., PRD 2002]

• Mismatch of matrix elements at O(p) remedied by improved 
quark field (a = 1)

• For tree-level matching of matrix elements of current between 
quark, anti-quark states, set gauge links to 1

• Note external-line factors for contractions with differentiated 
fields in lattice current

• Calculate matrix elements of improved current through O(p), 
equate continuum and lattice results to fix d1c, d1b



O(λ3) tree-level improvement
• To begin, consider same current matrix elements
• Lattice spinors and mass shell modified by addition of S6, S7 to 

Fermilab action [Oktay and Kronfeld, PRD 2008]

• For matching given matrix elements through O(p3), no other 
modifications enter, at tree-level

• Expand normalized continuum, lattice spinors
• Examine lattice artifacts ~ deduce field improvement terms



O(λ3) momentum expansions
• Continuum spinors through O(p3)

• Lattice spinors through O(p3)

• MX, MY are defined in terms of couplings m0, ζ, rs, c2

• MX, MY ~ M1 as a → 0
• w is defined in terms of m0, ζ, c1

• w = rs at tree-level



Improved quark field
• Inspecting momentum expansions, note independent structures 

of mismatches ~ one for each term at O(p2, p3)
• To match matrix elements through O(p3), consider ansatz for 

improved quark field (a = 1)

• Matching O(p2) terms yields d2
• Matching rotation breaking terms (to zero) yields d3
• Matching rotation preserving O(p3) terms yields d4



Generalized ansatz
• If ΨI transforms like ψ , improved current transforms 

correctly, and

• Enumerating all terms invariant under lattice theory 
symmetries through mass-dimension 6 gives



• Quark scattering off current via single gluon exchange

• Diagram vanishes in QCD
• Non-trivial with improved current
• Calculate on-shell matrix element, expand in momenta of 

external quarks, match to extract di

• Improved field suffices for O(λ3)-improved current?

Four-quark current matrix elements

p p′

k k′



Summary and outlook
• Bright future for lattice QCD and experimental efforts, understanding of 

quark flavor, CP violation, search for new physics
• |Vcb| crucial in this era; general methods for improvement ~ EFTs

– Tension in εK with exclusive |Vcb| suggests significant tension in UT analysis 
with exclusive |Vcb| (and exclusive |Vub|)

– Parametric uncertainty in K → πvv-bar, Bs → µ+µ -

– Improved Fermilab action with tree-level matching through third order in 
HQET [Oktay and Kronfeld, PRD 2008, arXiv:0803.0523]

– Improved Fermilab currents . . . [JAB et al., Lattice 2014]

• Increasingly precise determinations of form factors for B → πlv, Bs → Klv, 
B → D(*)lv, D → πlv, D → Klv, B → πl+l-, B → Kl+l- yielding new 
information about |Vub|, |Vcb|, |Vcs|, |Vcd|, tests of lattice methods, and SM

• Lattice calculations of kaon mixing BSM B-parameters yet to converge
• Lattice calculations of golden semileptonic decay form factors mature, 

entering second generation ~ sub-percent precision
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